
Course Name:Course Name:
Advanced JavaAdvanced Java

Lecture 7Lecture 7
Topics to be coveredTopics to be covered

 Multithreading

ThreadThread--An IntroductionAn Introduction
 A thread is defined as the path of execution of a

program.
 It is a sequence of instructions that is executed to

define a unique flow of control.
 It is the smallest unit of code.
 Example:- A central processing unit performs various

tasks simultaneously, such as writing and printing a
document, installing a software and displaying the
date and time on the status bar. All these processes
are handled by separate threads.

Cont…Cont…
 A process that is made up of only one

thread is known as single-threaded
application.

 A process that creates two or more
threads is called a multi threaded
application. For example:- Any web
browser, such as Internet Explorer is a
multithreaded application.

 Each thread in a multithreaded program
runs at the same time and has a different
execution path.

Basic Concept of MultithreadingBasic Concept of Multithreading

 A single threaded application can perform only
one task at a time. You have to wait for one
task to complete before another can start.

 Threads are used when you have to run various
applications that perform large and complex
computations. Multithreading helps to perform
these operations simultaneously, saving the
time of the user.

 Every program has at least one thread and you
can create more threads when necessary.

Cont..Cont..
 The microprocessor allocates memory to

the processes that you execute . Each
process occupies its own address space
or memory.

 However, all threads in a process occupy
the same address space.

MultitaskingMultitasking
 Multitasking is the ability to execute more than one

task at the same time.
 Multitasking can be divided into the following

categories:

1. Process-based Multitasking
2. Thread-based Multitasking

ProcessProcess--Based MultitaskingBased Multitasking
 A process is a program that is being executed by the processor.
 The process-based multitasking feature of java enables you to

switch from one program to another so quickly that it appears
as if the programs are executing at the same time.

 Example:- Process-based multitasking enables you to run the
java compiler and use the text editor at the same time.

 This feature enables a computer to execute two or more
processes concurrently.

 Processes are the tasks that require separate address spaces in
the computer memory.

ThreadThread--based Multitaskingbased Multitasking
 A single program can contain two or more threads and

therefore, perform two or more tasks simultaneously.

 Example:- A text editor can perform writing to a file
and print a document simultaneously with separate
threads performing the writing and printing actions.

 Threads are called lightweight processes because there
are fewer overloads when the processor switches from
one thread to another. On the other hand, when the
processor switches from one process to another process
the overload increases.

Benefits of MultithreadingBenefits of Multithreading
 Improved performance:- Provides improvement in

the performance of the processor by simultaneous
execution of computation and input/output
operations.

 Minimized system resource usage:- Minimizes the
use of system resources by using threads, which
share the same address space and belong to the
same process.

 Simultaneous access to multiple applications:-
Provides access to multiple applications at the
same time because of quick context switching
among threads.

 Program structure simplification:- Simplifies the
structure of complex applications, such as
multimedia applications. Sub programs can be
written for each activity that makes complex

Pitfalls of MultithreadingPitfalls of Multithreading

 Race Condition:- When two or more threads
simultaneously access the same variable, at least
one thread tries to write a value in this variable.
This is called race condition. This condition is
caused by the lack of synchronization between
two threads.

Example:- In a word processor, there are two
threads, one to read a file and the other to write
before performing its operation. The race
condition arises when the thread to read a file,
reads the file, before the thread to write a file
performs its operation

Cont…Cont…
 Deadlock condition:- This condition arises in a

computer system when two threads wait for each
other to complete their operations before
performing their individual actions. As a result the
two threads become locked and the program fails.

Example:- Consider two threads, Thread A and
Thread B. Thread A is waiting for a lock to be
released by Thread B, and Thread B is waiting for
a lock to be released by Thread A to complete its
transaction.

 Lock Starvation:- It occurs when the execution of a
thread is postponed because of its low priority.
The java run time environment executes threads
based on their priority because the CPU can
execute only one thread at a time.

Life Cycle of ThreadLife Cycle of Thread

Cont…Cont…
 A thread can be in any of the following states at

any instant of time.
 New:- When a thread object is created, a thread is

born. This state is called a new state. At this stage,
The new thread can start and move to the
Runnable state or this thread can be killed
immediately. Then it is called Dead thread.

 Runnable:- It means that the thread is ready for
execution and is waiting for the availability of the
processor for execution. This stage comes
between new and running state.

Cont…Cont…
 Blocked:- A thread is in a blocked state when it is not

allowed to enter the runnable state . This can happen
when a thread is either suspended or sleeping. At this
stage, thread is not considered dead.

 Waiting:- This is the state when a thread is waiting
due to round robin scheduling of the processor.

 Terminated:- A thread is considered terminated when
it has completed its execution.

Thread ImplementationThread Implementation
There are two ways of implementing threading in

java:-
 By extending java.lang.Thread class, or

 By implementing java.lang.Runnable interface

 Implementing Runnable is better because in Java we
can only extend one class so if we extend Thread
class we can not extend any other class while by
implementing Runnable interface we still have that
option open with us.

Second reason which make sense to me is more on
OOPS concept according to OOPS if we extend a
class we provide some new feature or functionality ,
So if the purpose is just to use the run() method to
define code its better to use Runnable interface.

Multithreading using Multithreading using RunnableRunnable
InterfaceInterface
 The Runnable interface only consists of run()

method , which is executed when the thread is
activated.

 Syntax to declare run() method is:
Public void run()

The run() method contains the code that defines
the new thread.

Example of multithreading using Example of multithreading using RunnableRunnable
InterfaceInterface

class newThreadClass implements Runnable
{

String ThreadName;
newThreadClass(String name)
{

ThreadName=name;
Thread t=new Thread(this,ThreadName);
System.out.println("Thread created: "+t);
t.start();

}

public void run()
{

try
{

for(int i=1;i<=5;i++)
{

System.out.println(ThreadName + "loop:" +i);
Thread.sleep(100);

}
}
catch(InterruptedException obj)
{

System.out.println("Thread:" + ThreadName +
"interrupted");

}
System.out.println(ThreadName + "is existing");

}
}

class MultipleThread1
{

public static void main(String args[])
{

new newThreadClass("FirstChildThread");
new newThreadClass("SecondChildThread");
try{

for(int i=1;i<=5;i++){
System.out.println("main Thread loop:" +i);
Thread.sleep(300);

}
}
catch(InterruptedException obj)
{

System.out.println("Main thread is interrupted");
}
System.out.println("main thread is terminating now");

}
}

Multithreading using Thread classMultithreading using Thread class

 You can create threads by extending the
Thread class.

 The Thread class is defined in the java.lang
package. This class defines several methods
that can be overridden by a derived class.

 You can use the run() method to create
threads only if a class does not extend to any
other class. The extending class calls the
start() method to begin the child thread
execution.

Example of Multithreading using Thread classExample of Multithreading using Thread class

class ThreadDemo extends Thread
{

ThreadDemo()
{

super("ChildThread");
System.out.println("ChildThread:"+this);
start();

}
public void run()
{

System.out.println("The child thread started");
System.out.println("Exiting the child thread");

}
}

class ThreadDemoClass
{

public static void main(String args[])
{

new ThreadDemo();
System.out.println("The main thread started");
System.out.println("The main thread sleeping");
try
{

Thread.sleep(1000);
}
catch(InterruptedException e)
{

System.out.println("The main thread interrupted");
}
System.out.println("Exiting main thread");

}
}

